Alloy design of nanoprecipitate-hardened high-Mn maraging-TRIP and -TWIP steels

D. Ponge, O. Dmitrieva, J. Millán, S. Sandlöbes, P. Choi, A. Kostka, G. Inden, <u>D. Raabe</u>

Düsseldorf, Germany WWW.MPIE.DE d.raabe@mpie.de

The 1st International Conference on High Manganese Steels 2011 Hilton Hotel Seoul, Korea, May 15-18, 2011

Dierk Raabe

>Introduction

- Compositions and processing
- Mechanical properties and microstructures
- Characterization of precipitations
- Formation of new austenite during aging

➢ Conclusions

Steel for automotive applications:

Good combination of strength, ductility, price

Lean Maraging TRIP Steels

> Ductile low carbon martensite matrix

Small amount of austenite (TRIP, TWIP)

Controlled precipitation hardening

> Introduction

Compositions and processing

Mechanical properties and microstructures

Characterization of precipitations

Formation of new austenite during aging

➢ Conclusions

Compositions in mass%: classical maraging steel

Steel	С	Ni	Со	Мо	Ti	ΑΙ	Mn	Fe
Maraging	0.01	18	12	4	1.6	0.15	0.05	Balance

Low carbon: ductile martensite

Precipitation hardening

Expensive for automotive applications !

Optimised for very high strength + toughness We want high strength + ductility

Compositions in mass%: new lean maraging steels

Steel	С	Ni	Со	Мо	Ti	ΑΙ	Mn	Fe
Maraging	0.01	18	12	4	1.6	0.15	0.05	Balance
<mark>09</mark> MnPH	0.01	2	_	1	1.0	0.15	9	Balance
12MnPH	0.01	2	_	1	1.0	0.15	12	Balance
15 <mark>MnPH</mark>	0.01	2	-	1	1.0	0.15	15	Balance

Low carbon: ductile martensite

Precipitation Hardenable

Mn (+Ni): austenite (TRIP)

- Vacuum induction melting
- Annealing
- Hot deformation
- **Solution heat treatment**
- Quenching \Rightarrow Martensite + retained austenite Aging (450°C) "Maraging" retained + new austenite

Introduction

Compositions and processing

Mechanical properties and microstructures

Characterization of precipitations

Formation of new austenite during aging

➢ Conclusions

Hardness during aging at 450°C

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Dmitrieva et al. Acta Mater 59 (2011)

12MnPH after aging (48h 450°C)

precipitates in α

$x_{Diff} \cong 2\sqrt{Dt} \cong 30nm$

no precipitates in austenite $x_{Diff} \cong 2nm$

Specimen [STEM BF] JEOL-TEM 200kV x400k 50%

Dmitrieva et al. Acta Mater 59 (2011)

200.0nm

Tensile tests

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany D. Raabe et al. Scripta Materialia 60 (2009) 1141

Introduction

Compositions and processing

Mechanical properties and microstructures

Characterization of precipitations

Formation of new austenite during aging

➢ Conclusions

Atom Probe, 12MnPH aged (48h, 450°C)

09MnPH aging at 450°C, Proxigrams

	at. % in particles	at. % in particles
Ni	39.99	52.88
Mn	24.70	32.66
AI	7.02	9.28 >47.11
Ti	3.91	5.17
Fe	23.97	0

possible: Ni₅₀(Mn,Al,Ti)₅₀

С	Ni	Мо	Ti	AI	Mn	Fe
0.01	2.0	1.0	1.0	0.15	9	bal.

09MnPH aging at 450°C

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Dmitrieva et al. Acta Mater 59 (2011)

After aging (48h 450°C) nanosized precipitations in martensite

 $(\emptyset \sim 5nm; volume fraction \sim 1.5\%)$

Heusler Alloy (Ni₂MnAI)? B2 or L2₁? Coherent? Cut by dislocations?

Introduction

Compositions and processing

- Mechanical properties and microstructures
- Characterization of precipitations

Formation of new austenite during aging

≻Conclusions

D. Raabe, D. Ponge, O. Dmitrieva, B. Sander, Scripta Mater. 60 (2009) 1141 D. Raabe, D. Ponge, O. Dmitrieva, B. Sander, Adv. Eng. Mater. 11/7 (2009) 547

Effect of aging on ductility

Effect of aging on ductility

APT results: Atomic map (12MnPH aged 450°C/48h)

Mn atoms, Ni atoms Mn iso-conc: 18 at.%

С	Ni	Мо	Ti	AI	Mn	Fe
0.01	2.0	1.0	1.0	0.15	12	bal.

70 million ions Laser mode (0.4nJ, 54K)

Introduction

Compositions and processing

- Mechanical properties and microstructures
- Characterization of precipitations
- Formation of new austenite during aging

Conclusions

Design of "Lean Maraging TRIP steel"Precipitation hardening⇒Increase strengthAustenite (retained + new)⇒Increase ductility

Martensitic Mn-steels (~0,01wt%C): good ductility

- + controlled amounts of Ni (2 wt%), Al (0.15 wt%), ... increase strength during aging by formation of nanosized precipitations without significant reduction of ductility
- By controlling the austenite stability (here by Mn) martensite can be refined and ductility can be further increased by retained and reverted austenite (TRIP)